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Absbact Within the framework of Fcynman path integration, expectation v a I w  of quan- 
tum mechanical operators may be exactly obtained for a class of time-dependent problems. 
Attention is focused on the two-dimensional motion of a charged particle in a perpendicular 
magnetic field with a time-dependent driving force. A harmonic oscillator potential is 
included to ensure that the corresponding density matrix is properly defined although some 
expectation values are defined without it. This potential is at least a mathematical conveni- 
ence. Some discnssion concerning the conditions under which steady states may be attained 
is also included, 

I. Introduction 

The introduction of the density matrix provides a convenient formalism for expressing 
the expectation values of quantum mechanical operators [ I ,  21. A statistical state is 
such that a particle may find itself in any quantum state according to a probability 
distribution. The density matrix contains all the necessary statistical information in 
such a way that the expectation value of an operator Q is given by 

In this equation both Q and the density matrix p are shown as explicit functions of 
time r .  They also depend, of course, on the canonical coordinates Y andp. We will work 
in the Schriidinger representation of quantum mechanics in which these coordinates are 
independent of time. The expectation values are naturally independent of the choice of 
representation. 

The time development of the density matrix is due to the propagator or time evolu- 
tion operator U. Specifically 

where the propagator is the solution of the Schrodinger equation 
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The formal solution can be written as 

where T is the time ordering operator. The matrix elements of the propagator in the 
position basis set can be written as Feynman path integrals. In the case that the Hamil- 
tonian is a quadratic form in the canonical coordinates we can write [3,4] 

U(r, I ;  U') = G(t )  exp - S(v, I ;  U') . (: 1 
The matrix element represents an integration over all paths starting at time zero from 
I' and ending at time I at Y. The path integral depends on the classical action Sand the 
prefactor G which is independent of the end points of the paths. 

In this article we are interested in Hamiltonians having the form 

H( r )  = HO + HI (T) (1.6) 
where HI is non-zero only for positive times and No does not depend on time. Before 
HI is switched on the density matrix may be modelled according to a Boltzmann 
distribution. We may choose 

po= z-'u,( -itip) (1.7) 
where p is the inverse temperature, 

Z= dr Uo(r, 4f i .D; r )  s 
and U. is the propagator corresponding to I&. The essential idea is that, once po is 
determined, the density matrix at a later positive time f is given by 

A t ) =  U(t)poU(O'. (1.9) 
If the entire Hamiltonian is a quadratic form in the canonical coordinates it is a straight- 
forward exercise to obtain suitable expressions for the propagators U. and U. I t  is then 
possible to obtain expressions for the expectation values of operators for the time- 
dependent problem. Concerning our choice of density matrix po, i t  will be noticed that 
the expectation values of the canonical coordinates are independent of the inverse 
temperature p. 

This type of path-integral approach has been used before to study the problem of 
polaron mobility [5-71. The principal quantity of interest was the expectation value of 
the velocity of a slow electron in a polar crystal, however, this velocity was not explicitly 
calculated. Also, the details as to how the electron-phonon interaction was turned on 
were left vague. The polaron was considered to be moving under the influence of applied 
electromagnetic fields in a steady state. This article will also discuss the conditions 
under which a steady state may be attained. 

The system of interest here is that of a particle of mass nt and charge q moving in 
two dimensions under the influence of a perpendicular constant magnetic field B and 
a harmonic oscillator potential. For positive times. the particle is also influenced by a 
driving force F. This force has two components in the plane of motion which are uniform 
in space but depend arbitrarily on time. This system is described by the Lagrangian 

L(r, i, r)=irni2-  fniw2r2+ l m ~ i . + ~ r + ~ ( z ) . u  (1.10) 
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where Y is the two-dimensional position vector. The vector potential is given according 
to the symmetric gauge by 

A = iB( -4: X, 0). (1.11) 

The 2 x 2 matrix J IS] is given by 

so that, working in Gaussian electromagnetic units 

(1.12) 

(1.13) 

with the cyclotron frequency SZ defined by SZ=qB/mc. For clarity i is written as a row 
vector. 

To conclude this introduction a word of caution is necessary. In order to obtain an 
expression for the density matrix PO it is essential that the trace in ( I  .8) be defined. To 
understand this we can write the matrix elements of the propagator U, in terms of the 
eigenfunctions y A  of the stationary-state Schrodinger equation. If the eigenfunctions 
can be labelled discretely then [2 ,  31 

Udr, - i f iP; r ‘ ) = ~ e x p ( - P E i ) ~ ~ ~ ( r ) y a  ( I , )*  (1.14) 
a 

where EA is the eigenvalue corresponding to yA. The trace of U ,  is given simply by 

Z = exp( -PEA). (1.15) 
A 

If however the labels are not discrete 

Uo(r, -iRp; U’)= dAexp(-PEa)yA(r)yA(u’)* (1.16) s 
and the eigenfunctions are normalized according to 

(1.17) 

Clearly the trace of U. is not defined in this case. For a charged particle moving in a 
constant magnetic field the labels are not entirely discrete [9]. These problems are 
avoided by the inclusion of the harmonic oscillator potential. It will, however, be noticed 
that the expectation values of the canonical coordinates are defined in the limit of 
zero w .  

2. The density matrix 

The expression for the path integral corresponding to the Lagrangian (1.10) is given 
by standard techniques [3,4] and reads 

U(v, t ;  r’)= mA exp(i s(r, t; r , ) )  
4niR sin ;At 
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with the classical action S given by 

S(r, t;v')=tinAcot iAt(2+fl2)-imApt exp(- f~nt) r' 
sin fat 

dT (r'sin iArexp(-&IO(f-.r)) 

+ r'+ sin f A(f - r )  exp(:Jns))F(.r) 

dosin fA(t-z) sin ) A ~ ( T ) +  
2 - 

tnA sin $A/ J a I d r  Jaz 
x e x p ( - f ~ ~ ( z -  a))~(a) (2.2) 

and A2 = 0' + 4w2. This result is actually valid for any driving force F(r),  however, in 
what follows i t  will be switched on only for positive times. 

An expression for the elements of the density matrix pa can be obtained by considera- 
tion of (2.1) for the situation in which there is no driving force. We first observe that 

tnA 
4mli sin $At 

&,(U, I ;  r') = . , exp 

where 

The trace of the propagator U,(/) is then given by 

1 

 C COS ~ A / - c o s  h) TI Ua(t)= 

and, replacing / with +lip. it is found that 

niA exp($Jpfia) ~) 
2R sinh $RA 

~pliA(rz+f2)+-r+ (2.6) 

The elements of the density matrix p ( t )  are given by 

P ( Y , / ; ~ ' ) =  dr dx' U(F,/;X)~O(X,X')U(I',~;I')* (2.7) s s  
where we have used the fact that the propagator Uis Hermitian. After substitution from 
(2. I )  and (2.2) and performance of tedious but straightforward Gaussian integrations it 
is found that 

p(r ,  /; r') =pa(r, r') exp(C(r, I ;  r ' ) )  (2.8) 
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where 

s,' I 
C(r, I ; / ) = -  (v - r ' )+  dr cos f A ( r - h ) e x p ( - ; J Q ( t - . r ) ) F ( r )  

li 

(2.9) 

with 

drs in  $A(t-.r) e x p ( - h ( t - r ) ) F ( r ) .  (2.10) 

The expectation values of  the canonical coordinates are given by [2] 

(2.1 1) 

and 

a dr '6(r-r ' ) -p(r , t ; r ' )  
dr' 

Substitution of the explicit expression for the density matrix then yields 

(r)=, jo 2 l  d r  sin i A ( t - ~ )  exp(-fJQ(t-r))F(r) 

(2.12) 

(2.13) 

and 

( p ) = j ' d r  cos t A ( t -  r )  exp(-$JQ(t- z ) )F(r ) .  

A check on consistency is provided by the equation of motion 

(2.14) 
0 

m<i> = ( p >  - fmW(v> (2.15) 

which is easily shown to be satisfied. 
We may make some observations concerning the results (2.13) and (2.14). First, 

they are independent of the inverse temperature p. In physical terms this, of course, is 
not unexpected since the system of interest involves the motion of a single particle. 
Other expectation values do, however, depend on the inverse temperature. In particular 
the expectation value of the Hamiltonian can be shown to be given by 

fi A sinh ipliA-Q sinh fpaQ 
2 cosh fpliA-cosh ipRQ ' 

(H) = fni(i)* + i n x ~ ~ ( r > ~  - F ( t ) .  (U) + - (2.16) 

Our second observation is that the expressions for (r) and ( p )  are defined in the 
limit of zero w in spite of the fact that the density matrix is not. The expressions are . rr 

(2.17) 
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and 

( p > = $  l O f d r  (exp(-JQ(t-r))+ I)F(r). (2.18) 

In general some expectation values are defined in the limit of zero 6) and some, such 
as (?), are not. The expectation value of the Hamiltonian is of course defined. 

3. Steady states 

A particle is said to be in a steady state if the expectation value of its acceleration is 
zero. This must be the case of the system under consideration before the driving force 
is turned on. Without this force, the expectation value (U) and all its lime derivatives 
are equal to zero. The question that now arises concerns the conditions under which a 
steady state may be attained after the force is turned on. 

Differentiation twice of (2.13) with respect to t yields 

-(A + exp(-tJ(A + Q ) ( t  - r)))F(r) .  

This result may be simplified by an integration by parts. Since F(O)=O, an alternative 
expression is 

I .  

in(+ =- d r  ((A -0) exp( i J ( A - Q ) ( t -  r ) )  
28  J '  0 

+(A + Q ) exp( - fJ(A +a )(t  - r)))fi( r ) .  (3.2) 

By equating this result with zero, the following condition for a steady state is obtained: 

So' d r  ((A - Q ) exp( $J(A  - i2 ) (1 -  r ) )  

+ ( A  +Q ) exp( - i J ( A +  a)(t- r)))F( r )  = 0 (3.3) 

The simplest way to satisfy this condition is by adiabatic switching [9]. The driving 
force is modelled according to 

F(r )  = @( r)( 1 -exp(-qr))Fo (3.4) 

where ri is a positive infinitesimal quantity and Fo is a conslant vector which the driving 
force becomes after a very long time 1 .  This time is chosen so that qt tends to infinity. 
Clearly F ( r )  is zero and (3.3) is satisfied. The driving force is switched on so slowly 
that the steady state is undisturbed. In fact the system after an infinite time is the same 
as the time-independent case where a constant driving force Fo is present for all times. 
The density matrix for this situation may be obtained by two methods. First, a constant 
force may be substituted into the classical action (2.2). Second, the expression (3.4) for 
the driving force may be substituted into (2.9) with qt-+cc. This is of course consistent 
with the theorem of Gell-Mann and Low [IO].  
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Of more interest is the case where the driving force is modelled by 
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F(T) =(@(e- eo) -@(T - +I))FI (3.5) 
where t > T, > r0>O and Fl is a constant vector. In this case the force is switched on at 
time T~ and switched off at a later time r l  . The derivative of (3.5) is 

k ( T ) = ( ~ ( T - e o ) - ~ ( z - T l ) ) ~ l  (3.6) 
which leads to the steady-state condition 

(A - a )  exp(JA(t - TO))( 1 - exp(- iJ(A - a )( T, - TO))) I 

+(A + Q )( 1 - exp( J (A +Q)(.rl - TO))) = 0. 

exp(Jx) =cos x + J sin .y 

(3.7) 

(3.8) 

Since this condition must be independent of I and 

for any x, a steady state can be attained after the driving force has been switched off 
only if 

2nn 2 n d  
r1-r0=-=- A Q  (3.9) 

where n and n' are integers. The ratio of A and Q must be a rational number in addition 
to the first equality holding. If  the driving force is switched o f f  at the wrong time the 
system can never regain a steady state. 

The condition (3.3) for a steady state is defined in the limit of zero o and can be 
written in the form 

Joz de  exp(JQr)k(e) =O. (3.10) 

Using the expression (3.6) for the force, a steady state is regained only if 

2nn 
z,-ro=- a (3.11) 

for integer n. If the force is switched on adiabatically, the steady state remains undis- 
turbed and the expectation value of the velocity after a very long time is 

J 
inn 

(i) = -- Fo (3.12) 

which is consistent with the Lorentz force [ I ,  1 I ]  if the force Fa is replaced by qEo 
where Eo is a constant electric field. 

Without the magnetic field (Q=O), the steady-state condition is 

Jo'dr cos ~ ( t -  r ) k ( r )  =O. 

Substitution from (3.6) enforces the choice 

(3.13) 

2rm 
TI -To=-  (3.14) 

0 

for integer n. I f  o is also zero the only condition to be satisfied is F ( f ) = O .  As long as 
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the driving force is eventually switched off a steady state is regained although it will be 
a diflerent steady state from the initial one. For example the expectation value of the 
momentum will increase to 

< p ) = I r d c 4 r )  (3.15) 
0 

from zero, 

4. Concluding remarks 

I n  this article expressions for expectation values have been obtained for a class of 
time-dependent quantum mechanical problems within the framework of Feynman path 
integration. The Hamiltonian included a harmonic oscillator potential which causes the 
entire system to have no translational invariance. Mathematically this local oscillator 
allows the density matrix and expectation values to be well defined. In many cases the 
expectation values are defined without the local oscillator, but the density matrix is 
not. 

Some physical problems, such as slow electrons in polar crystals [ 121 and disordered 
systems [13], are well suited to the application ofpath-integral techniques. Many results 
have been obtained, including the ground-state energy of the polaron 112, 141 and the 
density of states in disordered systems 141. The variational methods employed involve 
the introduction of a non-local trial harmonic oscillator which maintains the transla- 
tional invariance of the system. It is possible thal the addition of a local harmonic 
oscillator in the formalism may allow problems concerning measurement of particle 
velocities to be more accessible and better understood. 
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